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Outline of the talk

With a motivation, we first discuss inner and outer inverses.
We next see matrix representations of inner and outer inverses.
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Notation

Let X and Y be (complex) Banach spaces and let B(X ,Y ) be the set of
bounded linear operators from X to Y . If X = Y , then we just write B(X ).

We will write IX ∈ B(X ) for the identity operator IX x = x , dropping the
subscript when the context is clear, and O ∈ B(X ,Y ) for the null operator
Ox = 0.

Let A ∈ B(X ,Y ), if there is an operator B ∈ B(Y ,X ) such that AB = IY
and BA = IX , then we say that A is invertible with inverse A−1 := B .

Let us denote N (A) := {x : Ax = O} the null space of A and
R(A) := {Ax : x ∈ X} the range of A.
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Solution of an Operator Equation

We are interested in the following problem: given A ∈ B(X ) and y ∈ X ,
find x ∈ X such that

Ax = y . (1)

Of course, if A is invertible, we have x = A−1y . Thus, we are interested in
solving equation (1) for the case where A is not invertible.

Throughtout we will suppose A ∈ B(X ) is not invertible.

We say A is 1-1 if N (A) = {0} and A is onto if R(A) = X . It is a
consequence of the closed graph theorem that an operator is invertible if
and only if it is 1-1 and onto.
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Solution of an Operator Equation

In order to give a condition for being able to find a solution to (1), we
introduce complemented subspaces. Let M be a closed subspace of X . If
there exists a closed subspace N such that X = M ⊕ N, then we say that
M is complemented with complement N. Here, X = M ⊕ N, then we say
that M is complemented with complement N. Here, X = M ⊕ N means
that M ∩ N = {0} and for every x ∈ X , there exists (unique) u ∈ M and
v ∈ N such that x = u + v .

It is clear that an invertible operator has a closed range and complemented
“range and null spaces”. We are working with a non-invertible operator A,
and in a sort of “generalization”, we will require R(A) to be closed and
complemented ; and N (A) to be complemented. Thus, suppose R(A) and
N (A) are closed and complemented with complements M and N
respectively.
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Operator Matrix Representation

We can represent A in the following form:

A :

[
N
N (A)

]
→

[
R(A)
M

]
. (2)

Notice that for the reduction

A1 := A|N : N → R(A)

(defined by A1x = Ax for every x ∈ N) we have A1 ∈ B(N,R(A))

N (A1) = N (A) ∩ N = {0}
R(A1) = R(A)

and thus, A1 is invertible.
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Projection

Recall P is a projection if P = P2, and in this case we have Px = x for
every x ∈ R(P).

Let P be a projection onto R(A), and let B := A−1
1 P ∈ B(X ). Then,

ABA = AA−1PA = A. (3)

It follows that AB is a projection onto R(A):

(AB)2 = ABAB = AB,

R(A) = R(ABA) ⊆ R(AB) ⊆ R(A).

Thus, if y ∈ R(A), then ABy = y . Hence, taking x = By we have

Ax = ABy = y ,

that is, x = By is a solution for equation (1).
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Inner Inverse for A

Using (3) it is also easily verified that, for z ∈ X arbitrary,

By + (I − BA)z

is also a solution for equation (1).

The operator B constructed above satisfies A = ABA. This was one of the
keys for finding a solution to (1), and it deserves a name:

Definition : Let A ∈ B(X ), if there exists some B ∈ B(X ) such that
A = ABA holds, then B is called an inner inverse for A, and we say that A
is inner invertible.

We have shown that if A ∈ B(X ) has closed range ; and “complemented
range and null spaces”, then there exists an inner inverse B ∈ B(X ) for A.
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Inner Inverse for A

Now we are interested in matrix forms for A and B . Recalling
representation (2), we write the following matrix form:

A =

[
A11 A12
A21 A22

]
:

[
N
N (A)

]
→

[
R(A)
M

]
.

We have shown above that A11 : N → R(A) is invertible. Now, since
Ax = 0 for every x ∈ N (A), it follows that for A12 : N (A)→ R(A) we
have A12 = O, and for A22 : N (A)→ M we have A22 = O. Also, for
A21 : N → M, since M is a complement of R(A), and Ax ∈ R(A) for every
x ∈ N, then Ax = 0 for every x ∈ N, hence A21 = O. So, we get

A =

[
A11 O
O O

]
:

[
N
N (A)

]
→

[
R(A)
M

]
. (4)
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With respect to the same decomposition,

B =

[
B11 B12
B21 B22

]
:

[
R(A)
M

]
→

[
N
N (A)

]
.

Now, since ABA = A, from[
A11 O
O O

] [
B11 B12
B21 B22

] [
A11 O
O O

]
=

[
A11B11A11 O

O O

]
we have A11B11A11 = A11, and recalling A11 is invertible, we see that
B11 = A−1

11 .
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Since (BA)2 = BABA = BA and N (A) = N (ABA) ⊇ N (BA) ⊇ N (A), it
follows BA is a projection onto N, thus

BA =

[
I O
O O

]
:

[
N
N (A)

]
→

[
N
N (A)

]
.

But

BA =

[
A−1

11 B12
B21 B22

] [
A11 O
O O

]
=

[
A−1

11 A11 O
B21A11 O

]
,

so B21A11 = O, and since A11 is invertible, it follows B21 = O.
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In a similar way, we saw above that AB is a projection onto R(A), thus

AB =

[
I O
O O

]
:

[
R(A)
M

]
→

[
R(A)
M

]
.

But

AB =

[
A11 O
O O

] [
A−1

11 B12
B21 B22

]
=

[
A11A

−1
11 A11B12

O O

]
,

so A11B12 = O, and since A11 is invertible, it follows B12 = O.
Therefore, we arrive to the following matrix form for B:

B =

[
A−1

11 O
O B22

]
where B22 : M → N (A) is arbitrary.
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Thus, we have proved the following theorem.

Theorem : Let A ∈ B(X ) and suppose that R(A) and N (A) are closed and
complemented with complements M and N respectively. Then A is inner
invertible and for any inner inverse B ∈ B(X ) we have the following matrix
forms:

A =

[
A1 O
O O

]
:

[
N
N (A)

]
→

[
R(A)
M

]
,

where A1 is invertible, and

A =

[
A−1

1 O
O B2

] [
R(A)
M

]
→

[
N
N (A)

]
,

with B2 arbitrary.
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Observation

Notice that the theorem above shows that we don’t have uniqueness for
the inner inverse. Indeed, given an inner inverse for an operator, we
construct another inner inverse, although not necessarily distinct, with an
interesting property.

Suppose A = ABA. Now let C := BAB , then ACA = ABABA = ABA = A
and CAC = BABABAB = BABAB = BAB = C . Thus, C is an inner
inverse for A which also satisfies C = CAC . We will give this C a name:

Definition : Let A ∈ B(X ), if there exists C ∈ B(X ), C 6= O, such that
C = CAC , then C is called an outer inverse for A, and we say that A is
outer invertible.

We can say that if A is inner invertible then A is outer invertible.

P. Sam Johnson Operator Matrix Representations of Inner and Outer Inverses 14/28



Construction of an outer inverse for every nonzero operator.

We constructed an inner inverse for A provided its range and null space
were closed and complemented. Now we show that we can construct an
outer inverse for every nonzero operator.

Theorem : Let A ∈ B(X ) be a nonzero operator, then there exists
C ∈ B(X ),C 6= 0, such that C = CAC .

Proof. Since A 6= 0, there exists x0 ∈ X such that Ax0 6= 0, Let y0 = Ax0,
Since span{x0} and span {y0} are finite dimensional, they are
complemented. Thus, there exist subspaces M,N such that

X = span{x0} ⊕ N = span{y0} ⊕M.
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We have the following matrix form for A with respect to these
decompositions:

A =

[
A11 A12
A21 A22

]
:

[
span{x0}

N

]
→

[
span{y0}

M

]
.

It is clear that A11 : span{x0} → span{y0} is invertible. Now, taking

A =

[
A−1

11 O
O O

]
:

[
apan{y0}

M

]
→

[
span{x0}

N

]
.

we get CAC = C .

We have seen that inner invertibility implies outer invertibility. The theorem
above says that outer invertibility is more general than inner invertibility.
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We assume that for A ∈ B(X ) there exists C ∈ B(X ) such that C = CAC
holds and C 6= O. We are interested in matrix forms for A and C .

As for inner inverses, we have

(CA)2 = CACA = CA,

(AC )2 = ACAC = AC .

Also, from R(C ) = R(CAC ) ⊆ R(CA) ⊆ R(C ) we have

R(C ) = R(CA);

and from N (C ) = N (CAC ) ⊇ N (AC ) ⊇ N (C ) we have

N (C ) = N (AC ).

Thus, R(C ) and N (C ) are closed and complemented.
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Let M := R(C ),M1 := N (CA), and N := N (C ), then
R(AC ) = A(R(C )) = A(M) and

X = M ⊕M1 = A(M)⊕ N.

Let us consider the following matrix form with respect to these
decompositions:

A =

[
A11 A12
A21 A22

]
:

[
M
M1

]
→

[
A(M)
N

]

It is clear that A11 is onto; to see that it is also 1− 1, let x ∈ M such that
Ax = 0, since M = R(CA), there is some y such that x = CAy , then
0 = CAx = CACAy = CAy = x .
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For A12 : M1 → A(M), if x ∈ M1 = N (CA), then CAx = 0, it follows that
Ax ∈ N (C ), and since N (C ) ∩ A(M) = N (AC ) ∩R(AC ) = {0}, we have
that Ax = 0 and A12 = O.

Finally, for A21 : M → N, if x ∈ M = R(C ), then there exists y such that
x = Cy , hence Ax = ACy ∈ R(AC ), and since
N ∩R(AC ) = N (AC ) ∩R(AC ) = {0}, we have Ax = 0 and A21 = O.
Thus,

A =

[
A11 O
O A22

]
with A11 invertible and A22 arbitrary.
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Now consider the following matrix form of C with respect to the same
(fixed) decompositions:

C =

[
C11 C12
C21 C22

]
:

[
A(M)
N

]
→

[
M
M1

]
.

From C = CAC we have that A is an inner inverse for C , and from the
results for inner inverses we have

C =

[
A−1

11 O
O O

]
.

The outer inverse is not unique, in general. However, the matrix form of C
above shows that the outer inverse is unique when we fix its range and null
space.
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Thus, we have proved :

Theorem : Let A ∈ B(X ) be a nonzero operator and M,N subspaces of X .
If C ∈ B(X ) is an outer inverse for A such that R(C ) = M and
N (C ) = N, then we have the following matrix forms:

A =

[
A1 O
O A2

]
:

[
M
M1

]
→

[
A(M)
N

]
,

with A1 invertible and A2 arbitrary, and

C =

[
A−1

1 O
O O

]
:

[
A(M)
N

]
→

[
M
M1

]
.
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A Class of Outer Inverse

We saw above that an outer inverse is unique if we fix its range and null
space. We now fix these subspaces by means of another operator.

Definition : Let A,T ∈ B(X ) be nonzero operators. If there exists an outer
inverse C for A such that R(C ) = R(T ) and N (C ) = N (T ), then we say
that A is invertible along T , and we write C = A−T .

Notice that A is invertible if and only if it is invertible along I , and the
inverse is A−I . Since we are fixing the range and null space of an outer
inverse, the inverse along an operator is unique if it exists.

We can give a characterization of the set of operators along which an
operator A is invertible:
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A Class of Outer Inverse

Theorem : Let A,T ∈ B(X ) be nonzero operators. The following
statements are equivalent.

(1) A is invertible along T .
(2) R(T ) is closed and complemented subspace of X ,A(R(T )) = R(AT )

is closed such that R(AT )⊕N (T ) = X and the reduction
A|R(T ) : R(T )→ R(AT ) is invertible.
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We are interested in refining the matrix forms used in the above theorem.
If A is invertible along T with C = A−T , then A is outer invertible and A
has the following matrix form:

A =

[
A1 0
0 A2

]
:

[
R(T )
N (CA)

]
→

[
R(AC )
N (T )

]
,

with A1 invertible.

Notice that, since R(T ) and N (T ) are closed and complemented (because
C is inner invertible), T is inner invertible, and

T =

[
T1 O
O O

]
:

[
R(AC )
N (T )

]
→

[
R(T )
N (CA)

]
,

with T1 invertible.
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Now, we would like to have the matrix forms in terms of A an T only.
From the matrix forms

TA =

[
T1A1 O
O O

]
:

[
R(T )
N (CA)

]
→

[
R(T )
N (CA)

]
,

AT =

[
T1A1 O
O O

]
:

[
R(AC )
N (T )

]
→

[
R(AC )
N (T )

]
,

since T1 and A1 are invertible, it follows that N (TA) = N (CA) and
R(AT ) = R(AC ). Thus, we have arrived to the following:
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Theorem : Let A,T ∈ B(X ). If A is invertible along T , then we have the
following matrix forms for A,T and A−T with respect to the
decomposition X = R(T )⊕N (TA) = R(AT )⊕N (T ) :

A =

[
A1 O
O A2

]
:

[
R(T )
N (TA)

]
→

[
R(AT )
N (T )

]
, (A1invertible)

T =

[
T1 O
O O

]
:

[
R(AT )
N (T )

]
→

[
R(T )
N (TA)

]
, (T1invertible)

and

A−T =

[
A−1

1 O
O 0

]
:

[
R(AT )
N (T )

]
→

[
R(T )
N (TA)

]
,
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Conclusion and Final Remarks

In a Hilbert space, every closed subspace is complemented (by its
orthogonal complement), so every closed range operator on a Hilbert space
is inner invertible.

If we require the operator A ∈ B(X ) to be inner and outer invertible, we
still cannot guarantee uniqueness. However, if there exists B ∈ B(X ) such
that X = ABA and AB = BA, then taking C = BAB we have
A = ACA,C = CAC and CA = AC , and this C is unique. This C is called
the “group inverse”.

Since inner invertibility implies outer invertibility, it is natural to weaken
inner invertiblility while requiring outer invertibility. If A is outer invertible
with outer inverse B such that BA = AB and there exists n such that
A = AnBA, then A is said to be “Drazin invertible”, and the least n such
that A = AnBA holds is called the Drazin index of A.
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